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ABSTRACT 

Modeling of physical systems usually results in complex high order dynamic representation. The simulation and 

design of controller for higher order system is a difficult problem. Normally the cost and complexity of the 

controller increases with the system order. Hence it is desirable to approximate these models to reduced order 

model such that these lower order models preserves all salient features of higher order model. Lower order 

models simplify the understanding of the original higher order system. Modern controller design methods such 

as Model Matching Technique, LQG produce controllers of order at least equal to that of the plant, usually 

higher order. These control laws are may be too complex with regards to practical implementation and simpler 

designs are then sought. For this purpose, one can either reduce the order the plant model prior to controller 

design, or reduce the controller in the final stage, or both. In the present work, a controller is designed such that 

the closed loop system which includes a delay response(s) matches with those of the chosen model with same 

time delay as close as possible. Based on desired model, a controller(of higher order) is designed using model 

matching method and is approximated to a lower order one using Approximate Generalized Time Moments 

(AGTM) / Approximate Generalized Markov Moments (AGMM) matching technique and Optimal Pade 

Approximation technique. Genetic Algorithm (GA) optimization technique is used to obtain the expansion 

points one which yields similar response as that of model, minimizing the error between the response of the 

model and that of designed closed loop system.  

Keywords - Approximate Generalized Time Moments (AGTM), Genetic Algorithm (GA)

 

I. INTRODUCTION 
During  the  last  decade,  it has  been  shown  

that  wide  classes  of control systems  such  as  

chemical  process,  national  economy,  traffic  

networks,  steam quality control,  cold rolling mill, 

etc., may be modelled  in terms of time-delay systems. 

Time  delays  which  occur  between  the  inputs  

and  outputs  of  physical systems are often found in 

industrial systems, in particular process control, 

economical and biological systems. Typical sources of 

time delays are associated with transportation and 

measurement lags, analysis times for sensor 

measurement, computation  and communication  lags. 

The presence  of time delays in a system may make 

the design of feedback controllers for a system more 

demanding, since time delay tends to destabilize a 

system. Time delays always reduce the stability of 

systems. The control action cannot be realized 

immediately because of the time delay. This can lead 

to instability of a system. The effect of the time delay 

on the system dynamics,  however, depends on the 

delay and the system characteristics. So,  time  delay  

systems  present  a  wide  range  of  challenges  in  

implementing controllers for them. 

 

 

 

Problem Definition 
To design a controller such that the closed loop 

system response(s) matches with those of the chosen 

model as close as possible. 

.  A desired model should be developed for the 

specified performance measures. Based on 

desired model, a controller(of  higher order) will 

be designed using Model  Matching  method [11]  

and  will  be  further  approximated  to  a  lower 

order one using Approximate Generalized Time 

Moments (AGTM) / Approximate 

•  Generalized Markov Moments (AGMM) 

matching technique[1] and Optimal Pade  

Approximation technique[16]. 

•   Any optimisation  technique can be used to 

obtain the better expansion point i.e, a better 

response as that of model.  

 

Methodology 

.  A frequency domain method, called polynomial 

approximation is used. Pade approximation  is 

commonly use for model reduction. The main 

drawback of Pade  approximation   technique  [ 5 

] is  that  stability  of  the  resultant  order model 

is not guaranteed. 
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•    One of the methods  proposed  here,  Polynomial  

approximation  methods  are based  on  Time  

Matching  moment  [ 2 4 ] and  Markov  

parameters  matches between original and 

reduced order model.  

 

MODEL MATCHING APPROACH TO 

CONTROLLER DESIG 

•    The higher order controllers are found to be 

fragile which may even lead to instability for very 

small changes in the controller coefficient. 

•    The  present  work  follows  the  first  approach  

by  designing  a  high  order controller for the 

plant with specific performance. 

There are two approaches for controller design, 

•  Exact Model Matching (EMM) 

•  Approximate model matching (AMM) EXACT 

AGTMmethodemismatchingthefrequencyrespons

eofactualandapproximatedmodelsatdifferentpointsinth

esplane.Thesepointsareexpansionpoints(nonzerorealva

lues).Thenumberofexpansionpointsissameasthenumbe

rofunknownsintheEqn.Equatetheresponseofactualanda

pproximatetransferfunctionatexpansionpoints.Substitu

tetheexpansionpointsinEqn.andgettheequationswithun

knownparameters.Here,inthiscaseunknownisintheexpo

nentsoequationsarenonlinear.Solvetheseequationswith

aninitialvector‗x0„. 

 
 

Thesolutionofequationsareunknowncoefficientsof

approximatemodeltransferfunctionandtimedelay.Byusi

ngthissolutionformtheapproximatemodelwithtimedela

y.Getthestepresponsedataofthisapproximatedmodel.Th

ematchingeffectivenessoftheapproximatemodelisbase

dontheperformanceindexvalue 

 
where y(t)is  actual MTDS step response and y(t) is 

Approximated model step response. Search for 

minimum„ by varying expansion points, initial vector 

or both and select the corresponding model as the best 

approximated model. 

 

II. TIME DELAY SYSTEMS 
Time delays often arise in control systems, both 

from delays in the process itself and from delays in 

the processing of sensed signals. Process industries 

often have  processes  with  time  delays  introduced  

due  to the finite  time  it takes  for material to flow 

through  pipes. In measuring altitude of a spacecraft,  

there is a significant  time delay before  the sensed  

signal arrives  back on Earth.  A recent example of it 

is interplanetary telecommunication through Mars 

rover. In modern digital control systems, time delay 

can arise from sampling, due to cycle time of the 

computer and the fact that data is processed at discrete 

intervals. Thus, time delay could be due to heat and 

mass transfer in chemical industries, heavy 

computations  and hardware restrictions in 

computational  systems, high inertia in systems with 

heavy machinery and communications lag in space 

craft and remote operation. Chemical processing 

systems, transportation systems, communication 

systems  and  power  systems  are typical  examples  

that  exhibit  time-delays.  The effect of the time delay 

on the system dynamics, however, depends on the 

delay and the system characteristics. 

Time delays fall into two main categories: 

1. Fixed time delay 

2. Time-varying  delay 

 

Fixed time delay 

Delays, which remain  constant with time are 

called fixed time delays. Figure 2.1 shows a fixed 

time delay of T sec. The  Laplace  Transform of the 

system output  is 

          y(s) =e-stu(s) 

Where 

 

 
Fig.1. Fixed delay block 

 

In the time domain,  we can write it as 

y(t)=u(t−T) 

 

A substantial  work has been done in the past on 

the approximation of the  constant  delay. Many 

equivalent  frequency  domain [15]  Transfer 

Functions have been proposed  to  describe  constant  

time  delay systems. The methods that are  employed  

are   closely  related  to   the 

 

Time-varying  delay 

Delays,  which  are  functions  of  time,   are  

called  time-varying delays.  Linear systems with 

time-varying delays may be represented as 

 

 

 

                       

 

 

x& (t) = (A + ∆A(t))x(t) + (A d1   + ∆A d1 (t))x 

(t - d1 (t)) + (B + ∆B(t))x(t) + (Bd 1(t))x(t - d1 (t)) 

                        y(t ) = Cx(t ) 

and all the matrices have appropriate dimensions 

 

Time-varying  delay systems  show significantly  

different characteristics from that of fixed time  delay 
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systems.   Satisfactory  modeling of time-varying 

delay  is  important   for  the  synthesis   of  effective  

control   systems   for  such systems. 

 

III. OVERVIEW OF MODEL ORDER 

REDUCTION AND CONTROLLER 

DESIGN METHODS 
A first type of classification can be given by 

referring to the domain where the high-order and low-

order models have to be represented: either frequency 

or time. This is  quite general, and does not refer to  

any particular system structures (i.e. MIMO-SISO, 

symmetric, asymmetric). From an operative 

viewpoint, another type of classification is suggested 

by Skelton, who indicates three categories of model 

reduction procedures: 

1.  Methods based  on  polynomial approximations 

(usually suitable in  the frequency domain) [12] 

2.  Component truncation procedures based on 

state-space transformations 

3.  Parametric optimization techniques 

 

Importance of model order reduction 

The  model  reduction  philosophy  is  a  natural  

procedure  in  engineering practice. The main reasons 

for obtaining low-order models can be grouped as 

follows: 

1)  To have low-order models so as to simplify the 

understanding of a system 

2)  To reduce computational efforts in simulation 

problems 

3)  To decrease computational efforts and so make the 

design of the controller numerically more efficient. 

4)  To obtain simpler control laws  

 

MODEL MATCHING APPROACHES TO 

CONTROLLER DESIGN 

Modern robust controller techniques like H∞, 

LQR and Linear Quadratic Gaussian (LQG) methods 

lead to complex controllers, the orders of which may 

often be equal to or more than that of the plant itself. 

These resultant high order controllers  are found to be 

highly sensitive  to quantization  error and are often 

found to be fragile which may even lead to instability 

for very small changes in the  controller  coefficients.  

The  present  work  follows  the  first  approach  by 

designing a high order controller for the plant with 

specified performance.  This will give the desired 

response and desired model. There are two 

approaches for controller design, exact model 

matching (EMM) and approximate model matching 

(AMM)procedures.  

 

Exact Model Matching (EMM) problem 
In the exact model matching problem, it is 

desired to find the unknown parameters of the 

controller C(s) such that the closed loop transfer 

function T(s) exactly matches a general specification 

transfer function M(s). 

ς(s) = a(s) k(s)+c(s) h(s) = ςˆ(s) qˆ(s) 

A generalized algorithm has prepared for this 

method. But it has the drawbacks  like  pole-zero  

cancellation  of  the  polynomial  qˆ(s)  in  closed  

loop transfer  function  corresponds  to  a  lack  of  

closed  loop  system  controllability, orders of q(s), 

h(s) and k(s) are fixed,   Diophantine  equation uses 

exact model matching, choice of ς(s) is restricted, etc. 

  

Approximate Model Matching (AMM) problem 

The above difficulties of EMM can be effectively 

removed by using the concept   of   approximate   

model   matching   (AMM)   procedures.   So   here   

an approximate  model  matching  method  will  be  

used.  By  AMM  technique,  it  is possible to design a 

compensator of fixed order and structure to satisfy the 

desired specifications embodied by a general 

reference transfer function M(s), having no 

restrictions on its order. So here an approximate 

model matching method has used. 

 

Controller design by pade type approximation 

technique 

Pade type approximation techniques have been 

widely used in the area of reduced order modeling. In 

the area of reduced order modeling, the objective is to 

find a reduced model R(s) that approximates a stable 

high order system G(s). The Pade approximation 

technique matches two sets of parameters called the 

time moments   Ti  and  Markov  parameters   Mi,  of  

G(s)  with  the  corresponding parameters of R(s). 

 

Time Moments 

An irreducible rational function G(s) can be expanded 

as: 

              
Where g(t) is the impulse response of G(s). 

Expanding G(s) into its power series expansion 

          
the expression for the i

th
 derivative of G(s) evaluated 

at s=0 as 

Wh

ere is defined as the i
th

 Time Moment (TM) of G(s).it 

may be shown that 
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Ci may be thus called the proportional Time Moment 

of G(s).for the state space triple (A,B,C). it may be 

shown that : 

        
  

Markov Parameters 

 

Expansion of a strictly proper rational function G(s) 

into a power series expansion about infinity (s=�) 

yields: 

         
Then the coefficients of the series are given as: 

         
These coefficients are called Markov Parameter (MP) 

of the dynamic system 

 
be the impulse response of the system, then: 

 
It has been reported in the literature on reduced 

order modeling that matching initial few time 

moments !� of G(s) and R(s) ensures good matching 

in the low frequency response (steady-state) while 

matching initial few Markov parameters of the 

respective systems ensures good matching in the high 

frequency zone (transient response). For controller 

design by using Pade approximation techniques [4], 

[7], one may match initial few TM and MP. 

 

Mathematical Preliminaries for AGTM matching 

Consider a real function with derivatives, 

i=1,2,… in some region around the point x0. Let the 

values of F(x) be given for the real numbers x0, x1, 

x2,…, xn of 

the variables  xi; where x;=x 0 + ℎ; i  ∈[1,n]  and ℎ > 

0. These latter numbers x; are supposed to be all 

different. Using the notation of the calculus of divided 

differences,  we  may  define f[x] ≜ f(x0) and  

following  divided  difference  of   arguments 2 to 

(n+1):f[x0,x1] ≜  (f[x1]-f[x0])/(x0-x1) 

f[x0,x1,x2] ≜(f[x0,x1]-f[x2,x1]/( x0- x2 ) 

f[x0,x1,x2------xn]≜(f[x0,x1,x2------xk-1]- 

f[x1,x2------xk]/( x0- xk );k∈[2,n] 

Suppose that in the interval (a, b) bounded by the 

greatest and least of x0, x1, x2,…,xn the function of 

the variable x and its first (n-1) derivatives are finite 

and continuous and that exists. It may then be shown 

that 

 
Where n lies in the interval X0≤n<( X0+nh) 

Now, let ψ(x) be a second real function with finite and 

continuous derivatives around the point x = x0  such 

that 

ψ(X0 ) = f(Xi ), i=0,1,2,…n                             (4.13) 

(X0 + nℎ).if the parameter h takes a very small non-

negative value; then 

f( i)( X0 ) ≅ Ψ(i )( X0 ),    i ∈[0,n]                  (4.14) 

 

Thus, for a suitably small value of the parameter 

h for a given another real valued  function  Ψ(x)  may  

always  be  constructed  using (4.13) so  that  the 

approximate relation in (4.14) are satisfied. 

 

Approximate Generalized Time Moments 
Let K(s)  be the high  order  controller  transfer  

function  obtained  by the Synthesis equation. The 

time moments ! ;   T i=0,1,2, … , ∞ of K(s) are 

defined as 

 
are proportional to where: 

 

 

 

In the Classical Pade Approximate (CPA) technique, 

the reduced order transfer function equivalent of K(s) 

is chosen as 

Where n and m are the chosen orders of the 

denominator and numerator respectively.  The  

denominator  is  assumed  to  be  a  manic  polynomial 

.ai,i =0,1,2 ……….(n − 1) and bi,i " = 0,1,2 … . , m 

are the unknown parameter which are to be 

determined. C(s) is chosen such that its power series 

expansion coefficients η i 

                                         (4.18) 

 

 Coincide with the corresponding coefficients   of 

K(s), i=0,1,2,…,(nc − 1), where  is the number of 

expansion points. has to be chosen depending on the 

number of unknown  parameters  of the controller  as 

well as on the type of the expansion points (real or 

complex) . 

From  (4.15),  and  (4.16)  and  (4.18),  the  CPA  

technique  is  mathematically equivalent to: 

 
Using the results of mathematical preliminaries 

given in Section 4.4.3, the exact relations in (4.19) 

may be replaced by the approximate ones as in (4.13) 
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and (4.14). This finally gives, using (4.19), (4.13) 

and (4.14) 

 
Where  are  suitable  non-zero  general  numbers  

(frequency)  which  are termed as expansion points 

and is the number of expansion points taken . 

Let  be  distinct  values  of   such  that  

t1,t2,t3………. tn is  equivalent to  i ∈ [1,ne]   ti 

are  then  defined.   

 

Approximate  Generalized  Time  Moments 

(AGTM), generalized because the relations 

in(4.20) are  similar  to the  power expansions of 

K(s), C(s)about a non-zero general points and 

approximate because the   exact  differential   

operations   are r e p l a c e d    by  the  divided    

difference approximations, details of which are 

described in following section . 

 

Selection of Expansion Points 

In the area of reduced order modeling, the 

classical Pade approximation technique makes use 

of power series expansions of a rational function G 

(s) about s=0 or s=∞ leading respectively to the 

time moments or the Markov parameters. To 

alleviate the occasional instability problem 

encountered by Pade approximants, several authors 

have suggested expansion about s=a, where „a‟ is a 

nonzero, non negative real number (frequency). 

Based on the s-plane distribution of the poles and 

zeros of G(s), Pal.J and Ray.L.M [7] have 

proposed several heuristic criteria for  choosing  a  

feasible  value  of  „a‟.  It  has  been  shown  by  

Lucas.T.N  that expansions about negative or 

complex points in the s-plane may lead to better or 

„optimal‟ approximations. 

In this project, a method is proposed which 

finds the „optimal‟ points of expansion in the s- 

plane that finally leads to an approximation which 

is best in the sense of minimizing a user defined 

performance index .The expansion points can be a 

positive or negative real number or a complex 

point chosen from any of In this project, a method is 

proposed which finds the „optimal‟ points of 

expansion in the s- plane that finally leads to an 

approximation which is best in the sense of 

minimizing a user defined performance index .The 

expansion points can be a positive or negative real 

number or a complex point chosen from any of the 

four quadrants of the s-plane. Care must be 

exercised that in case of choosing complex points; 

these should not be in conjugate pairs. In the 

controller design scenario, the choice of the 

expansion points, are governed by the stability 

and performance of the closed loop system. The 

controller C (s) has to be designed such that the 

closed loop system responses satisfy the desired 

specifications, while guaranteeing closed loop 

stability as well. No theory is yet available  to 

determine  or search the expansion  points, such 

that poles of the resulting closed loop system can 

be guaranteed to be in the left half of the s-plane. 

The number of expansion points, depends upon the 

number of unknown parameters.  The problem of 

choosing the best expansion  points in order  to  

yield  a  stable  response  as  that  of  the  model,  

can  be  chosen  as  a constrained  optimization  

problem for the controller  design,  which is 

solved by Genetic Algorithm (GA) . 

 

IV. CONTROLLER DESIGN BASED 

ON OPTIMAL PADE 

APPROXIMATION METHOD 
A frequency domain method, called Optimal 

Pade Approximation(OPA) is commonly use for 

model reduction[16].The method was extended to 

fractional order controller design procedure by 

incorporating certain modifications and including the 

point of expansion at s= ∞.This method completely 

general for choice of expansion points, with little 

additional computational effort. 

Lucas [16]  has  shown  that  for  some  systems  

the  optimal  reduced  order  models may  require  

expansion  points  which  are  complex  numbers  

and  has  suggested  a method for generalizing the 

Optimal Pade Approximation (OPA) approach[4] 

which takes this into account, without requiring the 

use of any complex arithmetic. Reduced order 

models are derived by solving a set of linear pade 

equations[7] that allows a mixture of real, multiple 

or complex expansion points to be used and requires 

no complex arithmetic. The central idea of the Lucas 

technique[16] is to transform the rational 

approximation. This results in the method making 

use of elementary matrix operations and being 

computationally very efficient. The present work has 

modified and improved the Lukas method by 

relaxing the above mentioned  restrictions  and  also  

extended  the  method  to  the  controller  design 

procedure. The higher and lower order transfer 

functions can now be proper or improper functions 

having no restrictions the relative order of the 

numerator and the denominator of either higher or 

lower order transfer functions. 

 

Optimal Pade Approximation ( OPA) method for 

controller design[5] 
The main objective of model matching[11] is to 

design controllers in such a way that the step 

response of reference model should match or (as 

close as possible i.e. minimum error criteria) the step 

response of closed loop controlled plant. 

Let K(s) be the higher order proper or improper 

controller transfer function obtained by model 

matching. K(s) can be represented in the general 
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form as, 

 
Where  NK(s)  and  DK(s)  are  respectively  the  

numerator and denominator only nominal of K(s). 

bi,i=0,1,2,.....q and ai,i=0,1,2.....p are all known real 

numbers. 

Implementation of the  zero  augmentation process 

[2]  in  K(s) extends the  Lucas method and makes it 

more generalized[16,18]. 

The zeros padded up as higher order coefficients do 

not add any value to the polynomial  but  when  they  

enter  as   

matrix  elements,  this  zeros  attain  lot  of 

significance. 

K(s) can be reduced to C(s) of chosen structure 

by  

Optimal Pade Approximation (OPA) Method 

 

Where  NC(s) and  DC(s)  are  respectively the  

numerator  and  denominator polynomials of C(s). 

di,i=0,1,2,.....m and ei,i=0,1,2.....m are   unknown 

real numbers which are to be determined[6]. 

 

The proposed Optimal Pade Approximation 

(OPA) algorithm for a chosen set of expansion 

points s=Si    i=0, 1,2,..... (2m) is as followed 

For model matching [15], the condition is 

          C(s) = K (s) 

 

                    
On cross multiplication, becomes 

 

DK (s) NC (s) = N K (s) DC (s)                    (5.4) 

L.H.S & R.H.S can be termed as P(s) & Q(s) 

respectively. Thus, expression for P(s) & Q(s) can be 

written as 

P(s) = DK (s) NC (s) 

 

(5.5) 

Q(s) = N K (s)DC (s)                                            (5.6) 

The degree of the polynomial P(s) & Q(s) is 

 (n + m − 1) 

Equation (5.6) can be rewritten as 

P(s) = Q(s) at some expansion points          (5.7) 

From the expansion points s=Si where i=1,2,3,… 

where k is the number of unknown parameters of 

C(s) in (5.5) 

Form a polynomial h(s) whose roots are the 

expansion points=Si, as given below  

h(s) = (s − S1 )(s − S2 ).........(s − Sk ) 

 

The central concept of Lucas method lies in the 

following statement: 
“By the remainder theorem, dividing a general 

polynomial T(s) of degree r by another polynomial 

H(s), of degree v, (v<r), from highest powers, gives a 

reminder polynomial of degree   (v-1) which is the 

Taylor approximation of T(s) about the „v‟ roots of 

H(S)”. [15].Mathematical representation of reminder 

theorem is 

 
This concept is applied to P(s) & Q(s) of (5.7 & 5.8 

respectively) to obtain their Taylor approximant 

about  the expansion 

Reminder theorem:- 

 
  

V. SIMULATION RESULTS 
• A second order model chosen is 

 
Rise time (Tr) = 0.28 sec              

Settling time (Ts) = 0.62 sec  

Damping ratio ( ) = 0.9 

Time delay(Tm) = 0.2 sec 

A second order unstable plant G(s) with time delay 

(Tp)  chosen is, 

 
•  The design of a controller is such a way that the 

step response of the model chosen should match (or 
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as close as possible i.e. minimum error criteria) 

the step response of closed loop plant. Controller 

K(s) is designed using Model Matching Technique 

 
The obtained controller K(s) is of higher order. 

So, it is reduced to lower order structure using the 

following order reduction techniques. 

 

1. AGTM/AGMP method [7] 

2. Optimal Pade approximation method [15] 

 

AGTM/AGMP Method [7] 

Higher order controller K(s) is reduced to different 

lower order structure 

 

Design of PID controller 

General structure of PID controller is, 

 

 

 

 

Where, KP, KI and KD are the controller 

parameters. 

For expansion points, s= [-0.8 0.2 -0.1], 

PID controller. 

 

 

 

 

 

 Where,   KD=1.766;KP=1.742;KI=0.0786  

 System is stable. 

 Performance measure, J=30.3 

 

Design of PI controller 
General form of the PI controller is  

 

 

 

 

 

For expansion points, s= [-0.1, -0.2] 

 PI controller 

 

 

 

 

Where, KP=0.62,KI =0.0127 

 System is stable 

 

 Performance measure, J=75.01 

 

Design of practical PID controller 

General form of the PPID controller is 

 
As general PID controller is an improper 

transfer function, an insignificant pole is    added to 

the controller transfer function to make it as proper. 

For expansion points, s= [0.05, 0.01, 0.0001], λ = 

1000 

    Practical PID controller 

 System is stable 

 

Performance measure, J=4.9 

 

Design of Lead/lag controller 

General form of the Lead/Lag controller is,   

 

 
For expansion points, s= [0.1, 0.2, 0.3]  

 Lead/Lag controller,  

 
 System is stable. 

  

 Performance measure, J=48.8 

 

Comparison of different controller 

performances using AGTM/AGMP method for 

randomly chosen expansion points: 



K. K. D Priyanka et al Int. Journal of Engineering Research and Applications              www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 1( Part 3), January 2015, pp.89-99 

 www.ijera.com                                                                                                                                96 | P a g e  

 
Figure 6.1: Step response of closed loop system with 

PID controller for different expansion points 

 

 
Figure 6.2: Step response of closed loop system with  

  

      PI controller for different expansion points 

Figure 6.3: Step response of closed loop system 

with PPID controller for different expansion points 

 
 

such that poles of the resulting closed loop system 

can be guaranteed to be in the left half of the s-

plane. The number of expansion points, 89 

depends upon the number of unknown parameters. 

In the present work, this problem of choosing the 

best expansion points has been cast as a 

constrained optimization problem which is solved 

by Genetic Algorithm (GA). 

The optimization problem, in general can be stated 

as: 

 

 

 

Where ym  (t)  is the response of the (desired) model, 

M(s) and yc ( t )  is theresponse of the closed loop 

system with designed controller C(s). The constraint 

ensures that the chosen expansions points will 

always yield a stable closed loop system. 

Optimized expansion points from GA for 

AGTM/AGMP method 

Table.2: Comparison of different controller 

performances using AGTM/AGMP method with 

optimized expansion points: 

    
The Step response of the closed loop system with 

PID with best expansion points obtained from 

Genetic 

Algorithm
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Figure 6.6: Variation of Fitness value with No. of 

generations for PID controller 

 

 
Figure 6.7: Step response of closed loop system 

with PI controller 

 

 
The Step response of the closed loop system with 

PPID with best expansion points obtained from 

Genetic Algorithm 

 
Figure 6.9: Step response of closed loop system 

with PPID controller 

 

Optimal Pade Approximation Method[15] 

Higher order controller K(s) is reduced to PID and 

PI controller structures 

Design of PID controller 

For expansion points, s= [1.82, 0.06, 1], 

PID controller, 

 

 

 

 

 

Where     KD=0.0785; KP=1.091; KI=-0.005 

 System is stable. 

 Performance measure, J=18.66 

 

Design of PI controller 

For expansion points, s= [-5.42, -6.53], 

 

 PI controller 

 

 

 

 

 

Where, KP=1.044,KI=0.2629 

 

 System is stable 
 Performance measure, J=86.36 

 

Design of PI controller 

 

For expansion points, s= [-5.42, -6.53], 

 

PI controller 

 

 

 

 

 

Where, KP=1.044,KI =0.2629 

System is stable Performance measure, J=86.36 
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Table 6.3: Comparison of different controller  

performances  using Optimal Pade approximation 

method for randomly chosen expansion points: 

 
 

Step responses of the closed-loop system with 

PID controller for the expansion points given in 

the Table 6.3: 

 
Figure 6.13: Step response of closed loop system 

with PID controller 

 

Table.3: Comparison of different controller 

performances using OptimalPade approximation 

method with optimized expansion points: 

 
 

The Step response of the closed loop system with 

PID with best expansion pointsobtained from 

Genetic Algorithm 

 
Figure 6.15: Step response of closed loop system 

with PID controller 

 
Figure 6.18: Variation of Fitness value with No. of 

generations for PI controller 

 

Summary 
Design  of  Model  Matching  Controller  is  

done  and  further  reduced  to lower order 

controllers using AGTM/AGMP technique and 

Optimal Pade Approximation (OPA) method. 

To assure the closed loop system stability and to 

reduce the error between the responses of the model 

and the closed loop system, the expansion points 

has to be  optimized.  GA  optimization  technique  

was  used  to  achieve  the  optimal expansion points 

for different controllers. 

 

VI. CONCLUSION AND FUTURE 

SCOPE 
The controllers are designed for time delay 

systems based on the concept of model matching, 

model order reduction and GA optimization 

techniques. The algorithms developed using 

AGTM matching method and  OPA  results  in  

linear algebraic equations whose solution leads to the 

controller parameters. The developed controller 

design methodologies are generated and are free from 

any random selection of expansion points 

The significance of work is using the concept of 

model order reduction it leads to linear method of 

finding unknown parameters of controllers. 
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